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Abstract

Absorptances and deposited energy profiles are calculated for thin layers of metallic powder placed on a reflective

substrate at normal incidence of collimated radiation. Radiation transfer equation is analytically solved by the two-flux

method. The effective optical parameters of the powder are estimated in geometrical optics approximation taking into

account dependent scattering. The cases of specularly and diffusely reflecting particles are studied. Due to multiple

reflections in an open pore system, laser radiation can penetrate in powder to considerable depths, much greater than

the characteristic particle diameter. Total laser energy absorbed in a thin powder layer on a reflective substrate increases

with its thickness but the deposited energy density decreases. Generally, the absorptance and the energy density for

specular reflection are slightly greater than these values for diffuse reflection. The results obtained in the limit of deep

powder bed essentially agree with known ray tracing simulations. The present model is in good agreement with exper-

imentally observed correlation between effective absorptance of metallic powders and absorptance of corresponding

dense metals.
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1. Introduction

Consolidation of loose powder by local laser heating

is becoming a promising manufacturing technique be-

cause of easy control over both powder deposition and

laser radiation. One of the well-known examples is laser
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserv

doi:10.1016/j.ijheatmasstransfer.2005.01.044

* Corresponding author. Address: Graduate School of Engi-

neering, Department of Aeronautics Astronautics, Kyoto

University, Kyoto 606-8501, Japan. Tel.: +81 75 753 4943;

fax: +81 75 753 4942.

E-mail address: av.gusarov@relcom.ru (A.V. Gusarov).
cladding [1]. Such rapid prototyping and manufacturing

methods as selective laser sintering [2] and selective laser

melting [3] are being developed. The essential operation

is laser beam scanning over the surface of a thin powder

layer previously deposited on a substrate. Powder bind-

ing mechanisms, such as melting and solid-state and

liquid-phase sintering, strongly depend on temperature

and so estimating local temperature fields is very impor-

tant for process control.

The first problem arising when one attempts to calcu-

late the temperature induced by a scanning laser beam is

laser energy deposition. This includes not only an

absorbed fraction of laser energy but also a depth
ed.
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Nomenclature

A absorptance

a eigenvalue factor

C1,C2 constants in general solution

c fraction of collimated radiation scattered

into the forward hemisphere

D particle diameter

F angular intensity of diffuse radiation

f dimensionless angular intensity of diffuse

radiation

G collimated radiation intensity

g dimensionless collimated radiation intensity

h fraction of radiation uniformly distributed

over a hemisphere that remains in the hemi-

sphere after scattering

I angular radiation intensity

L layer thickness

n number of particles per unit volume

P scattering phase function

Q net radiative energy flux

q dimensionless net radiative energy flux

R particle radius

S specific area of powder per unit pore volume

s directional specific area per unit pore vol-

ume

U specific surface area per unit mass

u dimensionless deposited energy density

w mass fraction

x radius vector

x,y,z coordinates

Greek symbols

a scattering angle

b extinction coefficient

c scaling factor

d theoretical density

� porosity

h polar angle

j absorption coefficient

K wavelength

k optical thickness

n dimensionless coordinate

q reflectance

r scattering coefficient

u azimuth angle

v angle of incidence

w angle of reflection

X unit vector of direction

x albedo
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distribution of the absorbed energy because the incident

radiation penetrates into the powder due to multiple

reflections in an open pore system. The penetration is

especially important for highly reflective metallic pow-

ders as indicated by ray tracing simulation [4]. The ray

tracing technique [4,5] requires specifying the detailed

powder structure by particles shape, dimension, and

their coordinates that is a complicated problem itself

and requires additional assumptions. To avoid such a

problem in this work, powder is considered as a homog-

enous absorbing and scattering continuum with effective

radiation transfer properties equivalent to those of a

powder bed.

Radiation in the powder is characterized by the dis-

tribution of its angular intensity, I(x,X), so that

XI(x,X)dX is the energy flux density transferred by

photons directed about the unit vector X within solid

angle dX at point x. Effective value of the intensity is

meant when considering a heterogeneous medium such

as loose powder. That is, the local value is averaged over

a volume much greater than a particle. The net radiative

energy flux density is defined as an integral over all

directions:

Q ¼
Z
4p
XI dX. ð1Þ
In absorbing and scattering medium the angular radi-

ation intensity is governed by the radiation transfer

equation (RTE) [6]:

XrI ¼ �ðrþ jÞI þ r
4p

Z
4p
IðX0Þ P ðX0 ! XÞdX0; ð2Þ

where r and j are the scattering and absorption coeffi-

cients, respectively, and P(X 0 ! X) the scattering phase

function, which represents the probability that the radi-

ation propagating in direction X 0 is scattered to direc-

tion X. The phase function is normalised:

1

4p

Z
4p
P ðX0 ! XÞdX0 ¼ 1. ð3Þ

Instead of the pair r and j one often use the extinction

coefficient b = r + j and albedo x = r/b.
This article deals with the general problem of normal

incidence of collimated radiation on a thin powder layer

placed on a reflecting substrate. This configuration is

typical for laser manufacturing [2]. Effective radiation

transfer properties of metallic powders are theoretically

estimated in Section 2. The RTE equation (2) is analyt-

ically solved by the two-flux method [7] in Sections 3 and

4. In Section 5, the obtained results on energy deposition

profiles are compared with ray tracing simulation [4,8]



A.V. Gusarov, J.-P. Kruth / International Journal of Heat and Mass Transfer 48 (2005) 3423–3434 3425
and the results on absorptance are compared with exper-

iments [9].
Fig. 1. Schemes of scattering: (a), specular reflection, fixed

surface normal orientation for a given scattering direction; (b)

diffuse reflection, the radiation scattered into a specified

direction arises from surface elements oriented within the

shadowed region of the unit sphere. Angles: v, incidence; w,
reflection; a, scattering; u, azimuth.
2. Effective radiation-transfer properties of metallic

powders

Light scattering by spherical particles is generally de-

scribed by the Mie theory [10]. Currently, powders most

widely used in laser manufacturing consist of particles

with diameter D of several tens microns [2]. Scattering

of laser radiation by such large particles often reduces

to refraction and reflection in the geometrical optics

approximation. Thus, in a cloud of opaque spheres of

radius R considered as independent scattering centres,

extinction coefficient bi and albedo xi are [7]:

bi ¼ pR2n; xi ¼ q; ð4Þ

where n is the number of particles per unit volume and q
the hemispherical reflectance of the particle surface. It is

noteworthy that the extinction coefficient is determined

by geometrical parameters only and is independent of

the material and wavelength. In contrast, the albedo,

which is equal to reflectance, is independent of the

geometry but includes the mentioned physical depen-

dences. The specular and diffuse reflection laws give

phase functions Ps and Pd, respectively [7]:

P s ¼ q0 p� a
2

� �.
q; ð5Þ

P d ¼
8

3p
ðsin a� a cos aÞ; ð6Þ

where a is the scattering angle and q 0(v) the directional

specular reflectance depending generally on incidence

angle v = (p � a)/2. Diffuse reflection is independent of

incidence angle. Eq. (5) gives isotropic scattering in case

of directional reflectance independent of incidence angle.

It is known [10] that taking into account small-angle

diffraction effects at particle diameter D much greater

than wavelength K, leads to doubling extinction coeffi-

cient (4) while a strong forward-directed diffraction term

arises in phase function (5) and (6). However, the signif-

icant difference is only apparent. The issue is whether to

consider the small-angle diffraction as extinction or to

neglect it. In practice, the geometrical optics formulas

(4)–(6) can be applied [7] when

pD=K P 5. ð7Þ

The simple theory described above is valid only if the

particles are spherical and each particle scatters radia-

tion independently of its neighbours.

2.1. Statistical scattering model

Consider a powder bed (PB) composed of opaque

particles of arbitrary shapes and dimensions with the
only restriction that the curvature radius of the surface

is greater than the wavelength. According to Eq. (7), this

allows applying geometrical optics. The structure of PB

is characterized by such parameters as porosity e (vol-

ume fraction of pores) and specific surface area (total

surface area of particles) per unit mass U. In the studied

powder beds of opaque particles, radiation can not pen-

etrate into particles and is concentrated in pores. There-

fore, specific surface area per unit pore volume

S = d(1 � e)Ue is introduced with d being the density

of the solid phase (theoretical density). Distribution of

specific surface S over directions is specified by direc-

tional volumetric specific surface area of the powder

s(X), so that s(X)dX is the area of the particles� surface
with the external normal about unit vector X within

solid angle dX per unit pore volume of PB.

Consideration of radiation transfer through a thin

powder layer gives its effective parameters. Thus, the

extinction and scattering coefficients are obtained by

averaging over directions of the surface normal within

a hemisphere where incidence angle v is less than p/2
(see Fig. 1):

b ¼
Z
2p

cos vsðXÞdX; ð8Þ

r ¼
Z
2p
q0ðvÞ cos v sðXÞdX; ð9Þ

where dX = dudcosv and u is the azimuth angle.
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In case of specular reflection, scattered radiation

intensity at scattering angle a and azimuth angle u is pro-

portional to surface area at the direction satisfying the

specular reflection condition with incidence angle v =

(p � a)/2 and azimuth angle u as shown in Fig. 1(a):

dI(a,u)� q0(v)cosvs(v,u)dudcosv� q0(v)s(v,u)dudcosa.
Taking into account normalising condition (3), the

scattering phase function at specular reflection is

expressed as

Psða;uÞ ¼
pq0ðvÞsðv;uÞR 1

0
q0ðvÞ cos vd cos v

R 2p
0

sðv;uÞdu
. ð10Þ

Diffuse reflection gives the scattered intensity propor-

tional to the integral over surface elements with normals

oriented within the shadowed region of the unit sphere

as shown in Fig. 1(b):

Pdða;uÞ �
Z p=2þa

p=2
da0

Z 1

�1

q0ðvÞ

� cos v cosw sðu0; a0Þd cosu0. ð11Þ

where v is the incidence and w the reflection angles. Inte-

gration is performed in Eq. (11) in a spherical coordinate

system with the polar angle u 0 and the azimuth angle a 0

and the axis u 0 = 0 corresponding to the scattering polar

angle a = p/2 and the scattering azimuth angle u � p/2.
The incidence and reflection angles are obtained from

the following equations:

cos v ¼ sinu0 cos a0; cosw ¼ sinu0 cosða0 � aÞ. ð12Þ

If there is no preferential orientation of particles, sur-

face area distribution is isotropic:

sðXÞdX ¼ S dX=ð4pÞ; ð13Þ

where S is the specific surface area of the powder per

unit pore volume. Then Eqs. (8) and (9) give the follow-

ing expressions for extinction b and scattering r coeffi-

cients and albedo x = r/b:

b ¼ S=4; r ¼ q S=4; x ¼ q; ð14Þ

where the definition of the hemispherical reflectance [7],

q ¼ 1

p

Z
2p

q0ðvÞ cos vdX; ð15Þ

is taken into account. One can see from Eq. (14) that

only a quarter of the powder surface is effective in scat-

tering. A factor of 1/2 arises because, in average, only a

half of particle surface is exposed to the radiation of a

specified direction. Another factor of 1/2 originates from

integrating of cos v over a hemisphere. Physically, this

means that not the surface but its cross-section visible

in the direction of irradiation is important. In the isotro-

pic case, integration in Eqs. (10) and (11) gives the same

result as for spherical particles. The phase function is

given by Eq. (5) for specular reflection and by Eq. (6)

for diffuse reflection.
2.2. Powder mixtures

The above model can be extended to powder mix-

tures. Let the mixture of porosity e be composed of K

components with mass fractions wk, theoretical densities

dk, and specific surface areas per unit mass Uk,

k = 1, . . . ,K. Total specific area is

U ¼
X

Ukwk . ð16Þ

The scattering properties of each component are

characterised by albedo xk and phase function Pk.

Extinction coefficient b, albedo x, and phase function

P of the mixture are then calculated as

b ¼ 1� e
4e

UP
wk=dk

; ð17Þ

x ¼
P

xkUkwk

U
; ð18Þ

P ¼
P

xkP kUkwk

xU
. ð19Þ

Eqs. (17)–(19) estimate radiation transfer properties

of a powder mixture with known properties of its

components.

2.3. Dependent scattering

In dense PBs where particles touch each other, radi-

ation transfer can not be treated as scattering by sepa-

rate particles [11]. This effect is referred to as

dependent scattering and has been studied in a number

of experimental [12–14] and theoretical [5,11,15,16]

works.

For a PB of equal spherical particles with radius R,

specific area per unit pore volume is

S ¼ 4pR2n
e

; ð20Þ

where n is the number of particles per unit volume of PB

and e = 1 � 4pR3n/3 is the porosity (total volume of

pores per unit volume of PB). This gives the following

relation between independent scattering by opaque

spheres (4) and the statistical model (14):

b ¼ cbi; r ¼ cri; x ¼ xi; ð21Þ

where a scaling factor is introduced,

c ¼ 1=e. ð22Þ

Eqs. (21) and (22) reduce to independent scattering

(4) at high porosities, e ! 1, when scaling factor c tends
to unity. A considerable difference arises in dense PBs

due to dependent scattering, which is actually a mutual

influence of scattering particles. Dependent scattering

has no effect on the phase function according to the pres-

ent model. A simple interpretation of Eq. (22) is that
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radiation does not penetrate into opaque particles and

so the apparent concentration of scattering centres

should be calculated not per unit volume of PB but

per unit volume of pores.

Singh and Kaviany [5] obtained similar scaling rela-

tions (21) describing their ray tracing simulation results

in a wide range of porosity 0.3 < e < 1. They also con-

cluded that dependent scattering does not influence the

phase function and that the scaling factor is a function

of porosity. The analytical approximation of the func-

tion c(e) derived in [5] differs from Eq. (22) but actually

gives very close values in the considered porosity range

as shown in Fig. 2.

Kamiuto [15] attempted to estimate the dependent

scattering effects theoretically and obtained different

scaling relations:

b ¼ cbi; ð1� xÞ ¼ ð1� xiÞ=c. ð23Þ

However, they are equivalent to Eq. (21) in case of

highly reflective metallic powders with albedo x! 1.

Function c(e) reported in [15] is plotted in Fig. 2. It

agrees with the present model at high porosities e > 0.7

and considerably differs for more dense powders.

Tancrez and Taine [16] studied two models for por-

ous structures: Dispersed radius Overlapping Opaque

Spheres (DOOS) in a transparent matrix and Dispersed

radius Overlapping Transparent Spheres (DOTS) in an

opaque matrix. They showed that Eq. (14) are rigorous

for optically thin layers of the both structures and for

DOOS of arbitrary thickness. On the other hand, Monte

Carlo investigation of the DOTS model [16] gives stron-

ger extinction in thick layers than predicted by Eq. (14).

This can be described by Eq. (21) where the scaling fac-

tor is higher than specified by Eq. (22). The difference in

scaling factor increases with the density and reaches the
Fig. 2. Scaling factor to take into account dependent scattering:

full line, present model, Eq. (22); dashed line, theoretical

estimations by Kamiuto [15]; dotted line, fit to ray tracing

simulation by Singh and Kaviany [5].
factor of 1.5 at the porosity e = 0.4, which is typical for

powders employed in rapid manufacturing [2].

Thus, the DOTS model is an example where the sim-

ple statistical scattering model described in Section 2.1

and Section 2.2, is not accurate. This discrepancy may

originate from the general limitation of description of

heterogeneous medium by effective properties. In partic-

ular, the extinction length is comparable with particles�
size in dense PBs. On the other hand, the DOTS struc-

ture is rather complicate that can correspond to powders

with highly irregular particles only. Powders with about

spherical particles are better described by DOOS struc-

ture where Eqs. (14), (21) and (22) are rigorous [16].

The same rigorous result can be obtained for non-over-

lapping opaque spheres in a transparent matrix consid-

ering the chord-length distribution estimated in [17].

Monte Carlo identification [16] indicates that, in gen-

eral, the phase function of a dense PB differs from that

given by the independent theory, Eqs. (5) and (6). How-

ever, in case of DOOS model with the specular reflection

law, the phase function becomes about isotropic at high

reflectances [16]. This justifies applying Eq. (5) for metal-

lic powders.
3. Radiation transfer model

Fig. 3(a) shows the general configuration of PB used

in modelling. A powder layer of thickness L is placed on

a specularly reflecting substrate. Thus, one can simulate

thin powder layers on metallic substrates as well as deep

powder beds at L ! 1 where the influence of the sub-

strate is negligible. The Cartesian frame is introduced,

so that axis (OZ) is directed along the inner normal to

the powder bed surface and axes (OX) and (OY) lay

on the surface. Thus, z-coordinate is in fact the depth.

Normally incident laser radiation is assumed to be dis-

tributed over a spot at the powder bed surface with a

size much greater than the radiation penetration depth.

Therefore, radiation intensity distribution in lateral
Fig. 3. Scheme of the considered configuration of powder bed

(a) and typical angular diagram of radiation intensity in the

two-flux approximation (b). Radiation components: g+, for-

ward collimated; g�, backward collimated; f+, forward diffuse;

f�, backward diffuse.
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directions follows the distribution of incident laser en-

ergy flux density over the surface G0(x,y) and the consid-

ered problem is one-dimensional. Lateral coordinates x

and y are omitted below to simplify notation, although

they are actually taken into account through function

G0(x,y).

In one-dimensional case, the general RTE (2) reduces

to:

cos h
oI
oz

¼ b
x
2

Z 1

�1

Iðh0ÞP rðh0; hÞd cos h0 � IðhÞ
� �

; ð24Þ

where angular radiation intensity I(z,h) and reduced

phase function Pr(h 0,h) are independent of azimuth

angle. In isotropic media, phase function P(a) depends
on scattering angle a only, like in Eqs. (5) and (6), and

the scattering angle, in turn, depends on polar angles

of incident radiation, h 0, and scattered radiation,h, and
on the difference of azimuth angles u 0: cosa =

coshcosh 0 + sinh sinh 0 cosu 0. This allows defining the

reduced phase function as

Prðh0; hÞ ¼
1

2p

Z 2p

0

PðaÞdu0; ð25Þ

Eq. (24) is solved in segment z = 0, . . . ,L. Incident laser
radiation is assumed to be directed along the normal to

the powder bed surface that gives the boundary condi-

tion of normal incidence at z = 0:

Ið0; hÞ ¼ G0

2p
dðcos h� 1Þ; at h <

p
2
; ð26Þ

where d(x) denotes the Dirac delta-function. At plane

z = L the boundary condition of complete specular

reflection is used:

IðL; hÞ ¼ IðL; p� hÞ. ð27Þ

Angular radiation intensity can be expressed as the

sum

Iðz;hÞ ¼ GþðzÞ
2p

dðcosh� 1Þ þG�ðzÞ
2p

dðcoshþ 1Þ þ F ðz;hÞ;

ð28Þ

of collimated direct laser radiation and laser radiation

reflected from the substrate with energy flux densities

of G+ and G�, respectively, and diffuse radiation F.

The diffuse term arises when the direct and back re-

flected laser radiation are scattered. Integrating Eqs.

(24), (26) and (27) over cosh in small vicinities of for-

ward, h = 0, and backward, h = p, directions gives the

following boundary problem to obtain the direct and

back-reflected collimated radiation:

dGþ

dz
¼ �bGþ;

dG�

dz
¼ bG�; ð29Þ

Gþð0Þ ¼ G0; GþðLÞ ¼ G�ðLÞ. ð30Þ
The solution of this problem is:

Gþ ¼ G0 expð�nÞ; G� ¼ G0 expðn� 2kÞ; ð31Þ

where n = bz is the dimensionless coordinate and k = bL
the optical thickness. One can obtain from Eqs. (24),

(26) and (27) the following boundary problem for diffuse

radiation:

cos h
of
on

¼ x
2
P rð0; hÞgþ þ x

2
P rðp; hÞg�

þ x
2

Z 1

�1

f ðh0ÞP rðh0; hÞd cos h0 � f ; ð32Þ
f ð0; hÞ ¼ 0; at h < p=2; ð33Þ
f ðk; hÞ ¼ f ðk; p� hÞ; ð34Þ

where the following dimensionless parameters are used:

f = F/G0 is the diffuse radiation intensity and g+ = G+/

(2pG0) and g� = G�/(2pG0) the forward and backward

collimated radiation intensities, respectively. The first

term in the right-hand side of Eq. (32) is the diffuse radi-

ation source due to scattering of direct collimated radi-

ation. The second term is due to scattering of back-

reflected collimated radiation. The third term is the

source due to scattering of the diffuse radiation from

other directions, and the forth term is the sink caused

by scattering and absorption.

Eqs. (32)–(34) are solved by the two-flux method [7]

as follows. The diffuse radiation intensity is approxi-

mated as

f ðn; hÞ ¼ fþðnÞUþðhÞ þ f�ðnÞU�ðhÞ; ð35Þ

where function U+(h) is equal to unity in the for-

ward hemisphere, h < p/2, and zero otherwise. Function

U�(h), on the contrary, is equal to unity in the backward

hemisphere, h > p/2, and zero in the forward one. As

shown in Fig. 3(b), total radiation intensity is approxi-

mated by a superposition of two collimated and two dif-

fuse components.

Integrating equation (32) multiplied by U+(h) or

U�(h) over cosh from �1 to 1 gives two moment

equations:

1

2

dfþ
dn

¼�ð1� hxÞfþ þ ð1� hÞxf� þx½cgþ þ ð1� cÞg��;

ð36Þ

�1

2

df�
dn

¼�ð1�hxÞf�þð1�hÞxfþþx½ð1� cÞgþþ cg��;

ð37Þ

where

h ¼ 1

2

Z 1

0

d cos h
Z 1

0

P rðh0; hÞd cos h0; ð38Þ

is the fraction of radiation uniformly distributed over a

hemisphere that remains in the hemisphere after scatter-

ing and



Table 1

Coefficients of the two-flux equations for different scattering

models

Coefficients h c

Specular reflection 1

2

1

2

Diffuse reflection
1

3

1

6

Table 2

Dimensionless optical characteristics of powder

Conditions Name Definition

Thin powder layer

on a reflective

substrate

Energy flux qk = Qz/G0

Deposited energy
uk ¼ �rQ=ðbG0Þ

¼ �dqk=dn
Absorptance Ak

e ¼ qkð0Þ

Deep powder bed Energy flux q = limk!1 qk

Deposited energy
u ¼ �rQ=ðb G0Þ
¼ �dq=dn

Absorptance Ae = q(0)

A.V. Gusarov, J.-P. Kruth / International Journal of Heat and Mass Transfer 48 (2005) 3423–3434 3429
c ¼ 1

2

Z 1

0

Prð0; hÞd cos h; ð39Þ

is the fraction of collimated radiation scattered into the

forward hemisphere. Coefficients h and c corresponding

to the two particular cases of specular and diffuse reflec-

tion specified by Eqs. (5) and (6) are listed in Table 1.

Specular reflection is assumed to be independent of inci-

dence angle.

Eqs. (36) and (37) are to be solved with the following

boundary conditions:

fþð0Þ ¼ 0; f þðkÞ ¼ f�ðkÞ. ð40Þ
4. Results

The general solution of Eqs. (36) and (37) can be

expressed as

fþ ¼ C1 expð�2anÞ þ C2 expð2anÞ

� 1

p
x

1� 4a2
f½3cþ 2xð1� h� cÞ� expð�nÞ

þ ½1� c� 2xðh� cÞ� expðn� 2kÞg; ð41Þ

f� ¼ 1

ð1� hÞx ½C1ð1� hx� aÞ expð�2anÞ

þ C2ð1� hxþ aÞ expð2anÞ�

� 1

p
x

1� 4a2
f½1� c� 2xðh� cÞ� expð�nÞ

þ ½3cþ 2xð1� h� cÞ� expðn� 2kÞg; ð42Þ
where a is the eigenvalue factor, a2 = 1 � 2hx �
x2(1 � 2h). Constants C1 and C2 are found from bound-

ary conditions (40):

C1 ¼
1

p
xð1�xþaÞ

1�4a2

� 3cþ2xð1�h� cÞþ ½1� c�2xðh� cÞ�expð�2kÞ
1�xþa�ð1�x�aÞexpð�4akÞ ;

ð43Þ

C2 ¼ �C1

1� x� a
1� xþ a

expð�4akÞ. ð44Þ
Dimensionless net energy flux density in z-direction

qk is obtained from Eq. (1):

qk ¼Qz=G0 ¼ pðfþ � f�Þþ 2pðgþ � g�Þ

¼ � ð1�xÞ2 � a2

ð1� hÞð1� 4a2Þ

� 3cþ 2xð1� h� cÞþ ½1� c� 2xðh� cÞ�expð�2kÞ
ð1�xþ aÞexpð2akÞ� ð1�x� aÞexpð�2akÞ

� fexp½2aðk� nÞ� � exp½2aðn� kÞ�g

� ð1�xÞ 1� 4xðh� cÞ½ � þ 2a2

1� 4a2
½expð�nÞ

� expðn� 2kÞ�; ð45Þ

When k !1, Eq. (45) gives energy flux density in a

deep powder bed:

q ¼ lim
k!1

qk ¼ �ð1� x� aÞ½3cþ 2xð1� h� cÞ�
ð1� hÞð1� 4a2Þ expð2anÞ

� ð1� xÞ½1� 4xðh� cÞ� þ 2a2

ð1� 4a2Þ expðnÞ ð46Þ

The definitions of powder optical characteristics used

below are summarized in Table 2. Two of them are spec-

ified by Eqs. (45) and (46) and the others can be derived

from these equations. A simple expression is obtained

for absorptance of a deep powder bed:

Ae ¼
ð1� h� cÞð1� xÞ þ ½2ð1� hÞ þ c�a

ð1� hÞð1þ 2aÞ ; ð47Þ

which reduces to

As
e ¼

3a
1þ 2a

; a ¼ ð1� xÞ1=2; ð48Þ

in the case of specular reflection, and to

Ad
e ¼

3

4

1� xþ 3a
1þ 2a

; a ¼ 1� 2

3
x� 1

3
x2

� �1=2
; ð49Þ

in the case of diffuse reflection.



Table 3

Parameters of Fe–Cu and WC–Co powder mixtures accepted in

ray tracing simulation [4,8]

Parameter Fe Cu WC Co

Porosity of the mixture 0.75 0.75

Weight fraction 0.7 0.3 0.91 0.09

Theoretical density (g/cm3) 7.87 8.96 15.7 8.90

Particle diameter (lm) 50 30 50 20

Reflectance at 1.06 lm 0.7 0.9 0.45 0.69

Reflectance at 10.6 lm 0.965 0.985 – –
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5. Discussion

The statistical scattering model described in Section 2

is applicable to particles of arbitrary shape. According

to this model, radiative properties (extinction and scat-

tering coefficients and scattering phase function) in

packed beds of non-spherical particles without preferen-

tial orientation (statistically isotropic) are the same as in

packed beds of spherical particles with the same porosity

and specific surface. This result is similar to that well-

known from independent scattering theory [10]: ran-

domly oriented irregular convex particles scatter like

spheres. One can take into account preferential orienta-

tion of non-spherical particles through distribution of

specific surface over orientation s(X) in Eqs. (8)–(11).

All calculations are made for statistically isotropic

powder beds without regard to the shape of particles.

However, this model is validated by comparison with

ray tracing [4,8] only for spherical particles. Validation

of the statistical scattering model for non-spherical

particles requires further ray tracing simulation or

experimental measurements with characterization of

particles� shape.
Fig. 4 shows typical examples of depth profiles of

radiative energy flux density Q and deposited energy
Fig. 4. Penetration of laser radiation into an iron powder bed: (a)–(c)

(d), (e), thin powder layer on a completely reflecting substrate; (e), (f)

Table 2. The following parameters are marked in the graphs: laser wa

optical thickness k = bL. Full and broken lines represent the specular
density �$Q in iron powder calculated according to

Eqs. (45) and (46). Definitions of the corresponding

dimensionless parameters are presented in Table 2.

Two phase functions given by isotropic specular (5)

and diffuse (6) reflection models are used. Two laser

wavelengths of 1.06 and 10.6 lm are examined that cor-

respond to Nd:YAG and CO2 lasers, respectively. Albe-

dos x are estimated to be equal to reflectances of dense

material q according to Eq. (14). The reflectance

strongly depends on wavelength: Fe surface is consider-

ably more reflective at 10.6 lm than at 1.06 lm. The

numerical values of reflectance used in the calculations

are taken from Ref. [4] and listed in Table 3.
, radiative energy flux; (d)–(f), deposited energy density; (a), (b),

, deep powder bed. Dimensionless characteristics are defined in

velength, albedo x equal to reflectance q of dense material, and

and diffuse reflection models, respectively.
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Net radiative energy flux in a thin powder layer on a

completely reflecting substrate qk monotonously de-

creases with depth (see Fig. 4(a) and (b)) and vanishes

at the substrate where reflected radiation compensates

the incident one. The flux at a given depth increases with

the layer thickness because the back-reflected radiation,

which reduces the net energy flux in the forward direc-

tion, is more pronounced for thinner layers. The depth

of laser energy penetration into a deep powder bed in-

creases with reflectance of dense material as shown in

Fig. 4(c). In the case of CO2 laser where the reflectance

of iron is as high as 0.965, laser radiation is still signifi-

cant at the dimensionless depth of �10.

Energy density deposited into a deep powder bed

either monotonously decreases with depth at low reflec-

tance (see 1.06 lm curves in Fig. 4(f)) or reaches a max-

imum in the bulk at high reflectance (see 10.6 lm curves

in Fig. 4(f)). Deposited energy distribution in a thin

layer can be monotonous or have a local maximum

depending on the layer thickness (see Fig. 4(d)–(e)).

The layer thickness impact on the deposited energy is

opposite to the impact on the energy flux: the deposited

energy density increases with decreasing the thickness.

This behaviour is explained by substrate influence: the

substrate reflects radiation and makes it pass through

the powder once more in the backward direction. The

increase of the deposited energy density in thin powder

layers on reflective substrates is of particular importance

for laser treatment of powders.

As follows from Fig. 4, the difference in both radia-

tion flux and deposited energy between the specular (full

lines) and diffuse (broken lines) reflection models is sur-

prisingly low. Radiation flux at diffuse reflection is al-

ways less than that at specular reflection (see Fig.

4(a)–(c)). This can be explained by preferential back-

ward scattering in the diffuse reflection model according

to Eq. (6). This is why less radiation enters the powder at

diffuse reflection. The dependence of deposited energy

on reflection law is more complicated (see Fig. 4(d)–

(f)) but one can conclude that, in average, the deposited

energy density is less at diffuse reflection.

Laser radiation transfer in a deep powder bed has

been already studied by ray tracing Monte Carlo simu-

lation [4,8]. Iron–copper (Fe–Cu) [4] and tungsten car-

bide–cobalt (WC–Co) [8] powder mixtures have been

studied. All the powder components (Fe, Cu, WC, and
Table 4

Estimated optical parameters of the powder mixtures

Parameter WC–Co Fe–Cu Fe–Cu

1.06 lm 1.06 lm 10.6 lm

Extinction coefficient,

b (mm�1) 12.23 11.82 11.82

Albedo, x 0.52 0.78 0.973
Co) were accepted to consist of spherical monodispersed

specularly reflecting particles. The parameters taken for

these simulations are listed in Table 3. Applying Eqs.

(17) and (18) one can obtain the optical properties of

the mixtures listed in Table 4. These parameters are used

to obtain radiation flux and deposited energy profiles

according to the present RTE model with the isotropic

phase function of specular reflection (5). Fig. 5 compares

RTE solutions (full lines) with ray tracing simulation

(broken lines). The present calculations based on RTE

agree in general with the ray tracing [4,8].

The extinction length, 1/b, for the both powder mix-

tures is less than 0.1 mm (see values of b in Table 4).

However, radiation can penetrate into the powder beds

(PB) substantially deeper, as shown in Fig. 5. For in-

stance, radiation flux in the Fe–Cu mixture at 10.6 lm
is still considerable at the depth of 0.7 mm (see Fig.

5(c)). Direct laser radiation attenuates proportionally

to exp(�bz) (see Eq. (31)) and is negligible at such

distance. Only diffuse radiation is responsible for the

observed deep penetration that is due to multiple reflec-

tions of the incident radiation in the open pore system.

The importance of the diffuse radiation increases with

albedo x, which can be considered as the average reflec-

tance of particles in the mixture (see Eqs. (14) and (18)).

This tendency is clear from Fig. 5.

The only significant difference between the RTE and

the ray tracing results is in a thin layer adjacent to the

PB surface where RTE technique considerably overesti-

mates the deposited energy relative to ray tracing (see

Fig. 5(d)–(f)). Note that the difference occurs within a

particle diameter from the surface. The origin of the dis-

crepancy is that the structure of PB near the surface

changes. In particular, the porosity, e, gradually grows

to unity within about one surface monolayer. This effect

is not taken into account by the present RTE model

where a stepwise change of the porosity is implicitly as-

sumed at the surface of PB.

The effective absorptance of a powder layer on a

completely reflecting substrate, Ak
e (defined in Table 2),

increases with layer thickness (see Fig. 6) and reaches

a plateau for thicker layers that corresponds to a deep

powder bed. The higher is reflectance of dense material,

the slower effective absorptance approaches the plateau.

The effective absorptance value at the plateau decreases

with the dense material reflectance. Absorptance for the

specular reflection model (full lines in Fig. 6) is slightly

higher than for the diffuse reflection model (broken

lines). The difference in absorptance corresponds to the

difference in radiation flux shown in Fig. 4(a)–(c). The

absorptance at diffuse reflection is lower because of pref-

erential backward scattering according to Eq. (6). Sum-

marising the behaviour of thin powder layers on

reflecting substrates, one can say that the total laser en-

ergy absorbed in the layer increases with its thickness

but the energy density decreases.



Fig. 5. Comparison of the present calculations based on RTE (full lines) with ray tracing simulation (broken lines) for the WC–Co [8]

((a), (d)) and Fe–Cu [4] ((b)–(c), ((e)–(f)) powder mixtures at the wavelengths of 1.06 lm and 10.6 lm: (a)–(c), energy flux; (d)–(f),

deposited energy. Dimensionless values q and u are defined in Table 2.

Fig. 6. Effective absorptance of a powder layer on a completely

reflecting substrate versus layer thickness: full lines, isotropic

specular reflection model (5); broken lines, diffuse reflection

model (6). Powder material, laser wavelength, and reflectance of

dense material q taken for the calculations are marked near the

corresponding curves.

Fig. 7. Effective absorptance Ae of a deep powder bed versus

absorptance A of dense material: full line, isotropic specular

reflection model (5); broken line, diffuse reflection model (6);

points, experimental data [9,18–22]. Powder material and laser

wavelength are marked near the experimental points.
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Fig. 7 shows the effective absorptance of a deep pow-

der bed, Ae versus the absorptance of dense material,

A = 1 � q, for the specular (full line) and diffuse (broken

line) reflection laws calculated according to Eqs. (47)–

(49). There is no much difference between the two reflec-

tion laws. Both curves pass the points {A = 0; Ae = 0}
and {A = 1; Ae = 1} and are monotonous in the interval

0 < A < 1. Effective absorptance of powder Ae can be

considerably higher than the absorptance of the corre-

sponding dense material A in the interval 0 < A < 1. This

behaviour seems to be reasonable because only a part of

radiation is reflected by particles at the surface of PB.
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The rest enters the pores and is absorbed inside PB. The

ray tracing method [4] gives qualitatively the same func-

tions of Ae versus A.

The calculated curves are compared with experimen-

tal measurements for metallic powders (points in Fig. 7).

The powder effective absorptances are taken from [9]

and the corresponding dense material absorptances are

taken from [18–22]. Note that different methods of mea-

surement and sample preparation give rather different

values of absorptance of dense material [18–22]. The

points generally correspond to direct reflectance mea-

surements of a smooth surface of a polycrystalline sam-

ple [18]. Horizontal bars indicate uncertainty in the

absorptance of dense material. The experimental data

demonstrate a strong correlation between the absorp-

tance of powder and that of dense material that approx-

imately agrees with the calculated curves. The

experimental error is about the difference between the

specular (full line) and diffuse (broken line) scattering

models. Therefore, one can not conclude which of the

two models describes the experiments better. More care-

ful characterization of powder structure and the state of

the particles� surface is necessary to study the influence

of these factors on the optical properties.

In this work only perfectly reflecting substrates are

studied. Ray tracing simulation [4,5] and two-flux ana-

lytical solutions [5] have been reported for layers with

transmission boundary conditions at the back surface

that are equivalent to completely absorbing substrate.

One can qualitatively estimate the influence of non-per-

fectly reflecting substrate by comparison of these limit-

ing cases. Absorption by the substrate should reduce

radiation flux propagating in the back direction. This

increases absorptance of the system powder layer-

substrate but decreases energy deposited in the powder.
6. Conclusion

Laser radiation transfer in metallic powders can be

calculated on the basis of the radiation transfer equation

where a powder bed is characterised by the following

effective parameters: extinction coefficient b, albedo x,
and scattering phase function P. In the geometrical op-

tics approximation, the extinction coefficient is deter-

mined by the structure of powder, i.e. by size and

shape of particles and by their arrangement, but is inde-

pendent of optical properties of the material of particles

like reflectance. In case of opaque particles, one can esti-

mate extinction coefficient as a quarter of powder sur-

face per unit pore volume. This takes into account

dependent scattering that increases the extinction coeffi-

cient in inverse proportion to porosity. On the contrary,

the scattering characteristics as albedo and phase func-

tion depend on reflective properties of the material of
particles. For example, albedo is equal to hemispherical

reflectance when there is no preferential orientation of

particles. Dependent scattering can be neglected when

estimating the albedo and the phase function of metallic

powders, even at high densities.

The typical configuration of laser treatment of pow-

ders is normal incidence of collimated radiation on a thin

powder layer deposited on a reflective substrate. The

radiation transfer equation for this configuration is ana-

lytically solved by the two-flux method. The models of

isotropic specular and diffuse reflection are applied. En-

ergy deposition profiles and integral absorptances are

calculated for the considered system. The results ob-

tained in the limit of deep powder bed essentially agree

with ray tracing simulation [4,8]. Due to multiple reflec-

tions in an open pore system, laser radiation can pene-

trate into the powder to considerable depths, much

greater than the characteristic particle diameter. Scat-

tered radiation component formed by multiple reflec-

tions in metallic powders becomes more intensive than

collimated component originated from the incident laser

radiation. Summarising the behaviour of thin powder

layers on reflecting substrates, one can say that the total

laser energy absorbed in the layer increases with its thick-

ness but the deposited energy density decreases. Gener-

ally, absorptance and energy density for the specular

reflection model are slightly greater than these values

for the diffuse reflection model. This is because backward

scattering is more intensive at diffuse reflection.

The obtained theoretical results are in good agree-

ment with experimentally observed correlation between

effective absorptance of metallic powders [9] and absorp-

tance of corresponding dense metals.
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